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РЕЗЮМЕ 

Изследването е насочено към анализ на критичното и следкритичното равновесно 

състояние на водна кула с резервоар под формата на обърнат пресечен конус. Формата 

на резервоара варира от пълен конус до цилиндър, за да се проучи ефекта на формата 

върху реакцията на системата. Анализът се основава на еластично решение. Сравненията 

са направени между числени резултати, получени за съдържание в резервоара на 

течности и когато те са втвърдени. Оказва се, че резултатите са силно зависими от 

поведението на натоварването както количествено, така и качествено. Оказва се, че 

критичното натоварване от течността е по-малко от това при твърдото тяло. Също така, 

критичната точка в първия случай е нестабилна, докато във втория е стабилна. 

1. Въведение 

Изследването на критичното и следкритичното равновесие на механични системи 

е важна инженерна задача, пряко свързана с определяне на носимоспособността на 

конструкциите. Богато разнообразие от решени типични примери, методи, изводи и 

заключения могат да се намерят в забележителните монографии [1 – 8], отделни статии 

[9, 10] и др. 
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Задачата за определяне на критичен товар на колоната на водна кула с цилин-

дричен резервоар е поставена и решена от Феодосиев [11]. В една съвременна публика-

ция на Жичковски [10] подобна задача се използва за изследване на влиянието на пове-

дението на товара както върху големината на критичната му стойност, така и върху ха-

рактера на началното следкритично равновесно състояние. За целта резервоарът на вод-

ната кула е с форма на триъгълна призма. В този род задачи е налице промяна на геомет-

рията на системата в докритично състояние, която влияе в количествено и качествено 

отношение върху критичното и следкритичното състояние. В настоящата работа се 

разглежда критичното и следкритично равновесно състояние на водна кула с резервоар 

във формата на пресечен конус, който в граничен преход се свежда или до пълен конус, 

или до цилиндър. Задачата може да се разглежда като продължение и обобщение на [12]. 

Решението е точно въз основа на ойлеровата еластика [4] при следните предпоставки: 

 Осовата деформация на колоната и влиянието на напречната сила върху 

еластичната линия се пренебрегват. Пренебрегват се още собственото тегло 

на колоната и на самия резервоар; 

 В процеса на деформацията свободната повърхност на течността в резер-

воара не достига дъното му и/или капака; 

 Използва се статичен критерий за устойчивост, като критичната стойност 

на товара се определя с нулиране на характерен геометричен параметър. 

2. Геометрично решение 

Разглеждаме водна кула с резервоар във формата на прав кръгов пресечен конус 

за течност с обемно тегло γ. Образуващата линия на конуса сключва ъгъл   с хоризон-

та. Свободната повърхност на течността в резервоара е на разстояние H  от дъното му 

(фиг. 1а) и е с радиус R , а дъното е с радиус r. Тогава обемът на течността е 

    
2 3

2 31 1 tg
3 3

R H R
V

 
     , (1) 

където  = r/R е отношението между радиусите на основите. Използвана е и зависи-

мостта    tg 1 tgH R r R      . 

Ако в резултат на деформация на носещата колона резервоарът се завърти спрямо 

първоначалното си положение на ъгъл  , ще имаме картината от фиг. 1б. Решението се 

провежда при предпоставката, че ъгълът   е достатъчно малък, т.е. 2    и че 

свободната повърхност на течността не достига евентуален капак на резервоара, както не 

достига и дъното му. Освен това допускаме, че собственото тегло на кулата и резервоара 

е малко в сравнение с товара от течността и се пренебрегва. От фиг. 1б се разбира, че 

центърът на тежестта на течността зависи от ъгъла на завъртането   на резервоара, 

което означава, че и натоварването на колоната след деформацията ще зависи от   и то 

по различен начин в зависимост от нейното агрегатно състояние. Когато течността е 

замръзнала, центърът на тежестта ще запази положението си C  върху оста на симетрия 

на конуса. В течно състояние центърът на тежестта ще заеме друго положение. За 

определянето му въвеждаме две координатни системи Oxyz с начало в центъра на 

долната основа на конуса и BXZ с начало във върха B на допълнения до цял конус. За да 

приложим известната формула за център на тежестта на тяло, съставено от подобласти, 

използваме формулата за център на тежестта на целия конус ABD (фиг. 1б), в който 

преди деформацията течността е до ниво H h  и с радиус на свободната повърхност 

  tgR H h    [12]: 
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Фиг. 1. Право и завъртяно положение на коничния резервоар 
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Ако с 

 
 2

3

R H h
B

 
    и   

2

3

r h
b


  (3) 

означим обемите съответно на течността ABD в целия конус и в малкия конус aBd и 

като имаме предвид, че центърът на тежестта c на малкия конус е с координати (фиг. 1б) 

 
aBd

3
sin

4
X h  ,   

aBd

3
cos

4
Z h  , (4) 

за координатите на центъра на тежестта C  C C,X Z  на прeсечения наклонен конус след 

деформацията са в сила изразите 

 ABD aBd
C

BX bX
X

V


 ,   BD aBd

C
ABZ bZ

Z
V


 . (5) 

След заместване на (2), (3) и (4) в (5) и преобразувания, получаваме  

 

   

     
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 

4

C 3

4

C 3

cos sin sin sin3
sin ,

4 sin sin 1 cos

sin sin sin cos3
.

4 1 cos

X R

Z R

      
 

     

      


 

 (6) 

Необходимите за критичен и следкритичен анализ координати спрямо 

координатната система xOz са (фиг. 1б и фиг. 4): 
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 
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 




    



       

 
         
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
   

 (7) 

Тук за краткост е означено  tg 1H R    . В граничен преход, когато 

2 , получаваме като частен случай центъра на тежестта на кръгов цилиндър с 

радиус R  и височина H . 
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2 2

C 2 2

1
1 4 sin ,

8cos

H R
x

HR

 
    
  

   
2 2

2
C 2

4 tg cos
8

H R
z

HR

 
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 
 

. (8) 

При малък ъгъл 1  имаме приближение sin    и cos 1  . Тогава първата 

формула (8) се преобразува във вида  2 2
C 2

4
x H R

H


  . В този си вид тя е използвана 

за определяне на огъващия момент в [11]. Грешката между точното и приблизителното 

C
x  е толкова по-голяма по абсолютна стойност, колкото отношението R H  (или H R ) 

е по-голямо от единица. 

За сравнение на резултатите от решенията за различни стойности на геомет-

ричните параметри ( , , ,R r H  ) е удобно да разгледаме семейство равнообемни тела на 

течността от конус ( 0, 0)r     до цилиндър ( , 1)r R   . Възможностите са две, 

когато телата са с еднакъв радиус R  на горната основа или с еднаква височина H  (фиг. 

1а). В първия случай нека радиусът на горната основа R  на конуса е равен на радиуса 

0
R  на равнообемния му цилиндър с височина 

0
H . При това положение с помощта на (1) 

записваме 

  
3

3 2
01 tg

3

R
R H


    . (9) 

Оттук намираме 

 03
3

1
tg

H

R
  


. (10) 

Очевидно така определеното   има смисъл, когато 
0

tg 3R H  , като при равен-

ство 
0

tg 3R H   конусът е цял, т.е. 0r R   . При зададени обем на течността, R  и   

следва определяне на радиуса на малката основа r R  , височината  1 tgH R    на 

конуса и координатите на центъра на тежестта му (7). 
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Фиг. 2. Изменение на ρ, xC, zC и H в зависимост от ъгъла ψ при постоянно R 
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Фиг. 2 представя типично изменение на характерни геометрични параметри на 

коничното тяло на течността в зависимост от ъгъла на наклона му ψ спрямо хоризонта 

при условие, че всички конуси имат еднакъв радиус на горната основа R. Графиката е 

получена за 
0

2 m, 1mR H   в интервала 03
arctg

2

H

R


    и 0,2  . При долната 

граница 0,9828   конусът е цял, а при горната 
2


   тялото на течността е цилиндър. 

Прави впечатление бързото изменение на геометричните параметри в околността на 

долната граница на изменение на   до около  =1,1. Освен това в сравнение с конусите 

координатите на цилиндъра се влияят най-слабо от завъртането на основата му и 

следователно най-слабо ще влияят върху критичното и следкритичното реагиране на 

опорната колона. 

Когато конусите имат еднаква височина H =
0

H  с равнообемен цилиндър, чрез 

сравняване на обема 2
0R H  на цилиндъра с обема (1) на пресечения конус 

  
2

2 2
01

3

R H
R H


    (11) 

и като съобразим, че  1 tgR H   , достигаме след преобразования до квадратно 

уравнение по отношение на   с решение за по-малкия  1   корен 

 
   

 

2 22 2
0 0

2 2
0

6 tg 6 tg 3

2 3 tg

R H H R H

R H

    
 

  
  

. (12) 

Задачата има решение, когато 
03 tgR H  . При равенство 

0
3 tgR H   кону-

сът е цял, т.е. радиусът на малката основа е r R  =0. 
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Фиг. 3. Изменение на ρ, xC, zC и R в зависимост от ъгъла ψ при постоянно H 
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Фиг. 3 е аналогична на фиг. 2. Тук остава постоянна височината 1mH  , а се про-

менят останалите геометрични параметри, в това число и радиусът на горната основа R. 

Графиката е получена за 
0

2 m, 1mR H   в интервала 

0

arctg
23

H

R


    и 0,2.   

Заслужава да се отбележи слабото изменение на координатата zC, което е повлияно от 

постоянната височина H  на конусите. Що се отнася до координатата xC, тя е отново 

най-малка при цилиндъра със съответните последствия за критичното и следкритичното 

реагиране на механичната система. 

3. Критично и следкритично равновесие на водната кула 

Водната кула от фиг. 4 се състои от колоната AO и резервоар с форма на пресечен 

конус. В резултат на деформация системата заема положение AO’. Сечението О се 

завърта на ъгъл α, а колоната с дължина AOL   се изкривява, като дъгата AO запазва 

дължината си. По този начин се пренебрегват осовите деформации на колоната, което 

отразява заключенията от други публикации на един от авторите [13]. В решението не се 

отчитат още собственото тегло на колоната и на резервоара като малки величини в 

сравнение с теглото F на течността с обемно тегло γ. Въвеждаме координатна система 

C’XY с начало в центъра на тежестта на течността C’ след деформацията и ос X по 

направление на собственото тегло F. Теоремата за еластичната аналогия [14] постано-

вява, че при горните предпоставки кривата линия AO’, заедно с нейното еластично 

продължение O’C’, е с известно уравнение. За определянето ѝ се използват параметрите: 

s дължина на дъгата или естествения параметър, мерена от началото C’ към края А; 

ъгълът   между оста X и тангентата към кривата в точка C’; текущият ъгъл   между 

тангентата към кривата в произволно сечение S  и оста X, който се изменя в интервала 

0    . Във връзка с началото C’ на координатната система C’XY е необходимо да се 

каже, че то е в сечението с нулев огъващ момент, но то не е по необходимост в центъра 

на тежестта на течността C’. Този център обаче и координатното начало по необходи-

мост трябва да лежат на директрисата на силата F. С други думи, за решението на 

поставената задача за критичен и следкритичен анализ трябва да удовлетворим само 

условието за равенството между 
C

Y  от фиг. 4 с 
C

x  от фиг. 1б и (7), но не и равенство 

между 
O

X   от фиг. 4 и 
C

z  от фиг. 1б и (7). 

Координатите  X   и  Y   на точките на кривата AO’C’ и нейното естествено 

уравнение   C'Ss    са [13, 14] 

          2 2 2 22 2 , , ,
EI

X E q E q K q F q
F

       
  

 (13) 

   2 cos
EI

Y q
F

   , (14) 

      2 2 ,
EI

s K q F q
F

    
  

. (15) 
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Фиг. 4. Следкритично равновесно положение 

В горните зависимости E е модулът на линейна деформация на материала, I е 

главният инерционен момент на напречното сечение,    2 2, ,E q E q   са съответно 

пълен и непълен елиптичен интеграл от втори род,    2 2, ,K q F q   са съответно пълен 

и непълен елиптичен интеграл от първи род [15]. Приети са за удобство и безизмерните 

параметри 

 sin
2

q


 ,   

sin
2arsin

q



     и   
2FL V

L
EI EI


   . (16) 

Системата решаващи уравнения на задачата за определяне на критичния и 

следкритичния товар включва геометричните условия AO'L   и C C
Y x , обсъдени по-

горе. Според фиг. 4, от друга страна, можем да запишем 

 AO' AC O C    . (17) 

Тъй като 0   в сечение A  и     в сечение O' , с използване на (16) полу-

чаваме 

 

 

 

χ 

φ 

α 

A 

O 

C 
C’ 

X 

Y 

F 

YC 

O’ 

S 
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A

0,     C'

sin
2arsin

q



  ,    2 ,0 0F q  . (18) 

По-нататък (15) и (17) дават 

 AC   2 ,
L

K q


   O C      2 2
C',

L
K q F q  
  

. (19) 

От (17) и (19) следва първото решаващо уравнение 

  2
C', .F q     (20) 

Изрази (13) и (16) доставят второто решаващо уравнение. След преобразувания 

имаме 

 

 

 

2
2 3 4

2

2
2

2

cos
3 1 6 4 3 sin sin

cos

cos
4 1 3 3 cos

cos

R

L

 
         
 
 


    



C

2
cos 0q   


. (21) 

Системата трансцендентни уравнения (20), (21) съдържа като неизвестни ъгъла   

(или все едно параметъра q) и параметъра   на товара ,F  който поддържа критично 

или следкритично равновесно положение, по дадени , , , , , .L E I    Критичният товар и 

съответният критичен параметър 
cr

  се получава, когато контролният параметър 0,  

а с него и 0 . 

В случаите на цилиндричен резервоар вместо (7) ще използваме (8) в комбинация 

с (13) и (16), така че вместо (21) получаваме 

 

2 2
0 0

2 2
00

1
1 4 sin

8cos

H R

HR

 
   
  

C

2
cos 0q   


. (22) 

Необходимо е да се отбележи, че при запазването на обемите на течността разли-

ката в натоварването, а оттам и на товарния параметър ще се диктува от нейното обемно 

тегло. По-интересен за практиката случай е когато течността е известна. Уравненията 

(20), (21) отново са в сила, като в израза за   от (16) се замести обемът V  от (1), 

например 

  21
H

LR
EI


   . (23) 

Така при известно обемно тегло   и други два параметъра, например H  и ,  ре-

шението ще води до определяне на радиуса на горната основа R . В критично състояние 

вместо cr
  тогава ще имаме критичен радиус cr

R  и т.н. 
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4. Числен пример 

Решението на системата (20), (21) е числено в средата на МАТЛАБ. За целта е 

прието 6 m.L   Таблица 1 показва числени резултати от решението на системите транс-

цендентни уравнения (20), (21) и (20), (22) при различни стойности на ъгъла   на 

завъртане на крайното сечение на колоната. Втора и трета колона се отнасят за резервоар 

с форма на пресечен конус с наклон на образуващата линия спрямо хоризонта 

3,5.    Четвърта и пета колона са за равнообемен на конуса цилиндър при еднакви 

радиуси 2 m,R   докато последните две колони са за равнообемен на конуса цилиндър 

при еднаква височина 2mH  . Съответните критични стойности на товарния параметър 

са 
cr

1,12;   0,713  и 0,802. Прави впечатление, че най-голям е критичният параметър 

за конуса, а най-малък за равнообемния му цилиндър с еднакъв радиус .R  Обяснението 

ще потърсим като се облегнем на деформираната ос на колоната при натоварване в 

близост до критичното (фиг. 5). Трите пълни еластични линии (AC’ на фиг. 4) започват 

от началото на координатната система (запъването), но са отместени за яснота при 

съпоставянето. Получени са за 0,1   и се отнасят за конуса (Cone), цилиндъра с 

еднаквa височина H с конуса (CylH) и цилиндъра с еднакъв радиус R с конуса (CylR). 

Всяка една от кривите включва дължината на колоната AOL   и еластичното продъл-

жение O C .   Дължините им са съответно 1,404 ,L  1,961L  и 2,204 ,L  които според обоб-

щената формула на Ойлер [6] представляват половината изкълчвателна (ефективна) 

дължина на колоната. Коничният резервоар причинява най-малка изкълчвателна дъл-

жина на колоната, поради което критичният ѝ параметър е най-голям. 

 

Фиг. 5. Еластична линия на колоната в следкритично състояние 
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От табл. 1 забелязваме още, че товарният параметър намалява с нарастване на 

контролния геометричен параметър  . Като имаме предвид симетричния характер на 

системата, очевидно е налице неустойчива симетрична критична точка. 

Таблица 1. Резултати от решение на системите уравнения (20), (21) и (20), (22) 

α 
R = 2 m;   H = 2 m R = 2 m;   H0 = 0,829 m R0 = 1,2877 m;   H = 2 m 

χ Λ χ Λ χ Λ 

0,001 0,0011 1,1201 0,0015 0,7132 0,0014 0,8017 

0,01 0,0111 1,1201 0,0153 0,7132 0,0139 0,8017 

0,05 0,0556 1,1201 0,0765 0,7131 0,0696 0,8018 

0,1 0,1112 1,1198 0,1531 0,7127 0,1392 0,8021 

0,15 0,1668 1,1193 0,2301 0,712 0,2089 0,8025 

0,2 0,2227 1,1186 0,3076 0,711 0,2788 0,8031 

0,25 0,2787 1,1176 0,386 0,7097 0,3488 0,8038 

0,3 0,335 1,1162 0,4653 0,708 0,4191 0,8047 

0,35 0,3918 1,1142 0,546 0,7059 0,4897 0,8057 

За да се подчертае влиянието на поведението на товара върху големината на 

критичната му стойност и характера на критичната точка, ще се спрем на случая със 

замръзнала течност. Товарът се определя като ойлеров [10] и вместо 
C

x  от (7) и (8) в 

решаващото уравнение 
C C

Y x  ще използваме очевидното 
C C0

sinx z   (фиг. 1б), 

където 
C0 OC'z   следва от (7) при 0  . След преобразувания достигаме до добре 

известна формула от стереометрията, която при използваните тук означения гласи 

 

   

2 2

C0 2 2

3 4 3 2

4 3 3 4 1
z H H

   
 

  
. (23) 

При това положение вместо (21) ще имаме 

 

 

2

2

3 4
sin

4 3 3
H

 


 
C

2
cos 0q   


 (24) 

за пресечения конус и 

 0 sin
2

H


C

2
cos 0q   


 (25) 

за цилиндъра. 

Табл. 2 показва числени резултати от решението на системите трансцендентни 

уравнения (20), (24) и (20), (25) при различни стойности на ъгъла   на завъртане на 

крайното сечение на колоната. Съдържанието на колоните е аналогично на онези от 
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таблица 1. Съответните критични стойности на товарния параметър са 
cr

1,336;   

1,132  и 0,86. Вижда се, че товарният параметър нараства с нарастване на контролния 

геометричен параметър  , т.е. налице е устойчива симетрична критична точка. И сега 

критичният параметър при конуса е най-голям в сравнение с равнообемните му ци-

линдри. Във всички случаи обаче критичният параметър е по-голям от онзи при течност, 

като нарастването е около 16% при конуса, 37% при цилиндъра с еднакво R с конуса и 

7% при цилиндъра с еднакво H с конуса. 

Таблица 2. Резултати от решение на системите уравнения (20), (24) и (20), (25) 

α 
R = 2 m;   H = 2 m R = 2 m;   H0 = 0,829 m R0 = 1,2877 m;   H = 2 m 

χ Λ χ Λ χ Λ 

0,001 0,0010 1,3357 0,0011 1,1320 0,0013 0,8603 

0,010 0,0103 1,3357 0,0110 1,1321 0,0132 0,8603 

0,050 0,0514 1,3359 0,0552 1,1322 0,066 0,8605 

0,100 0,1028 1,3365 0,1105 1,1328 0,1319 0,8610 

0,150 0,1542 1,3376 0,1657 1,1338 0,1979 0,8618 

0,200 0,2057 1,3392 0,2209 1,1352 0,2639 0,8629 

0,250 0,2571 1,3411 0,2761 1,1370 0,3300 0,8644 

0,300 0,3085 1,3435 0,3314 1,1391 0,3961 0,8662 

0,350 0,3599 1,3464 0,3866 1,1417 0,4623 0,8683 

1.325
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Фиг. 6. Сравнение между равновесните траектории при течност и твърдо тяло 

На фиг. 6 са показани равновесните траектории, получени при 3.5,    2 m,R   

2 mH   за течност и твърдо тяло. Стойностите за течността са умножени с 1,192 за 

удобно съпоставяне на обща графика с онези за твърдото тяло. Иначе критичната точка 

за течността е при 1,1201  , т.е. значително по-долу от тази за тялото. Следователно, 

разглеждането на течността като твърдо тяло при оценка на устойчивостта на кулата би 
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довело до съществена грешка в ущърб на сигурността. Равновесните траектории се 

различават и качествено. За разлика от критичната точка при твърдото тяло, която е 

устойчива, тази за течността е неустойчива, т.е. с увеличаване на контролния параметър 

  при дадено   равновесната сила F  намалява. 

5. Заключение 

Представено е точно решение с помощта на ойлеровата еластика за критичното и 

следкритичното равновесие на водна кула с резервоар – пресечен конус. Чрез промяна 

на геометричните параметри на формата в граничен преход като частни случаи се 

получават резултати за цял конус и цилиндър. Направени са качествени и количествени 

сравнения между резултати за влиянието на поведението на съдържанието (като течност 

или твърдо тяло) на резервоара върху реагирането на системата в околността на 

критичното състояние. 

Този род решения са полезни не само с конкретните си резултати за големината 

на критичния товар и характера на следкритичното равновесие, но и за сравнения и 

оценки на резултати, получени по приблизителни методи като метода на крайните и 

граничните елементи, крайните разлики, на смущенията и др. 
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CRITICAL AND POST-CRITICAL ANALYSIS OF WATER TOWER 

WITH CONICAL TANK 

K. Mladenov1 ,  A. Doicheva2 

Keywords: critical and post-critical analysis, truncated cone, fluid, rigid body, column 

of water tower, stability 

ABSTRACT 

The paper is aimed at analyzing the critical and post-critical equilibrium state of a water 

tower with a tank in the form of inverted truncated cone. The form of the tank is varied from 

complete cone to cylinder in order to study the effect of the shape on the response of the 

system. The analysis is based on elastica solution. Comparisons are done between numerical 

results obtained for fluid contents and when the fluid is considered as a rigid body. It turns out 

that the results depend strongly on the behaviour of the loading both qualitatively and 

quantitatively. The critical load from the fluid is less than from the rigid body. Also, the critical 

point in the former case is unstable while in the latter it is stable. 

  

                                                           
1
 Kosta Mladenov, Prof. DSc Eng., Dept. "Technical mechanics", UACEG, 1 H. Smirnenski Blvd., Sofia 

2
 Albena Doicheva, Chief. Assist. Dr. Eng., Dept. "Technical mechanics", UACEG, 1 H. Smirnenski 

Blvd., Sofia 1046, e-mail: doicheva_fhe@uacg.bg 




